Two-Phase eBPF Program Signing

Linux Kernel Maintainer
Cong Wang, xiyou.wang@gmail.com
https://wangcong.org/about/

LSF/MM/BPF 2025, March 25, 2025


mailto:xiyou.wang@gmail.com
https://wangcong.org/about/

Why Traditional Signing Doesn't Work

e eBPF programs undergo necessary modifications during loading
e These modifications invalidate traditional signatures

e Major modifications include:
o Map FD fixups: replacing map placeholders with actual file descriptors

o BTF and CO-RE relocations: adjusting field offsets based on kernel version

o Function call relocations: resolving BPF-to-BPF and BPF-to-kernel function
calls

o Global data section processing: initializing variables and constants



The Catch-22 Situation

e If we sign the original binary:
o Signature becomes invalid after 1libbpf 's modifications

e If we sign after modifications:
o We lose the ability to verify the program's original authenticity



In-kernel eBPF Program Loader

e Multiple proposals to move the eBPF program loader into the kernel

e Critical issues with this approach:
o Adds complex code to privileged kernel space

o Compatibility challenges with different kernel versions
o Reduced flexibility compared to user-space loading

e Essentially user-space vs kernel-space debate



Two-Phase eBPF Program Signing

e Mirrors the eBPF program preparation and loading process

e Like a legal document requiring both:
o Initial notarization

o Subsequent verification of modifications

e |everages existing eBPF infrastructure



Phase 1: The Baseline Sighature

e Generated when the eBPF program is initially compiled
e PKCS#7 signature for the original, unmodified program
e Serves as proof that the original program came from a trusted source

e Analogous to getting a document notarized before filling in details



Phase 2: The Modified Program Signature

e Created after 1libbpf has made necessary modifications

e New signature covering both:
o The modified program

o Its original signature
e Establishes a chain of trust

e Proves modifications were authorized and applied to legitimate code



Verification Process

1. Kernel verifies original program against baseline signature
2. Then verifies secondary signature covering both:
o Modified program

o Qriginal signature



Guarantees

e Program originated from a trusted source
e Modifications were authorized

e Chain of trust remains unbroken



Advantages

e No kernel modifications required
o Built on existing eBPF infrastructure

o Uses standard BPF LSM hooks and kfuncs

e Highly customizable by user
o No need to upstream (except libbpf changes)

o Finer granularity of control
= e.qg.if you want to skip signing for bpftrace
e Strong auditability
o Precise tracing of failures

o Clear audit trails for security investigations

10



Disadvantages

e The signing eBPF program must be trusted
o Requires careful integration with secure boot

e It also must be loaded as early as possible
o But we can place itin initramfs

o Or built into the kernel (not yet supported)

e Distribution of the private key is a challenge
o Not specific to this proposal

o Same for DKMS signed modules

11



Proof of Concept

PKCS#7 signatures for both phases

BPF LSM hooks to intercept program loading
Standard cryptographic primitives from OpenSSL
Leverages existing Linux kernel keyring infrastructure

Available as open source (proof of concept)
github.com/congwang/ebpf-2-phase-signing

12


https://github.com/congwang/ebpf-2-phase-signing

Building eBPF Programs into the Kernel

e The signing eBPF program becomes part of the trusted kernel image
e Eliminates the security concerns of dynamic loading

e Challenges:
o No libbpf loader to use?

o How to verify the program? What if it fails to verify?
o Less flexibility for rapid deployment

o Limited user-space interactions

13



Possible Solution

e Compile the signing eBPF program into the kernel image

e Parse the ELF section which contains the program

e Call call _usermodehelper() toload and attach the program from user-space
e Panic if the program fails to verify

e Use memfd to load the program from memory

14



Pseudo Code

static int __init bpf_signing_init(void)

{

}

int ret;

char *argv[] = {
"/sbin/bpftool",
nprogu ,
"load" ,
"/boot/signing_prog.o",
"pinned",
"/sys/fs/bpf/signing_prog",
"type",
n 'Lsmn ,
NULL

3

char *envp[] = {
"HOME=/",
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
NULL

}i

ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
if (ret < 0) {
panic("Failed to load eBPF signing program: %d\n", ret);

ret = call_usermodehelper("/sbin/bpftool",
(char *[]1){ "/sbin/bpftool", "prog", "attach", "pinned",
"/sys/fs/bpf/signing_prog", "1lsm", NULL },
envp, UMH_WAIT_PROC);
if (ret < 0) {
panic("Failed to attach eBPF signing program: %d\n", ret);
}

pr_info("eBPF signing program loaded successfully\n");
return 0;

late_initcall(bpf_signing_init); /* After bpf subsystem init */

15



Thank You!

Questions?

Contact: Cong Wang xiyou.wangcong@gmail.com

16


mailto:xiyou.wangcong@gmail.com

