
Two-Phase eBPF Program Signing
Linux Kernel Maintainer
Cong Wang, xiyou.wang@gmail.com
https://wangcong.org/about/

LSF/MM/BPF 2025, March 25, 2025

1

mailto:xiyou.wang@gmail.com
https://wangcong.org/about/

Why Traditional Signing Doesn't Work
eBPF programs undergo necessary modifications during loading
These modifications invalidate traditional signatures
Major modifications include:

Map FD fixups: replacing map placeholders with actual file descriptors
BTF and CO-RE relocations: adjusting field offsets based on kernel version
Function call relocations: resolving BPF-to-BPF and BPF-to-kernel function
calls
Global data section processing: initializing variables and constants

2

The Catch-22 Situation
If we sign the original binary:

Signature becomes invalid after libbpf 's modifications

If we sign after modifications:
We lose the ability to verify the program's original authenticity

3

In-kernel eBPF Program Loader
Multiple proposals to move the eBPF program loader into the kernel
Critical issues with this approach:

Adds complex code to privileged kernel space
Compatibility challenges with different kernel versions
Reduced flexibility compared to user-space loading

Essentially user-space vs kernel-space debate

4

Two-Phase eBPF Program Signing
Mirrors the eBPF program preparation and loading process
Like a legal document requiring both:

Initial notarization
Subsequent verification of modifications

Leverages existing eBPF infrastructure

5

Phase 1: The Baseline Signature
Generated when the eBPF program is initially compiled
PKCS#7 signature for the original, unmodified program
Serves as proof that the original program came from a trusted source
Analogous to getting a document notarized before filling in details

6

Phase 2: The Modified Program Signature
Created after libbpf has made necessary modifications

New signature covering both:
The modified program
Its original signature

Establishes a chain of trust
Proves modifications were authorized and applied to legitimate code

7

Verification Process
1. Kernel verifies original program against baseline signature
2. Then verifies secondary signature covering both:

Modified program
Original signature

8

Guarantees
Program originated from a trusted source
Modifications were authorized
Chain of trust remains unbroken

9

Advantages
No kernel modifications required

Built on existing eBPF infrastructure
Uses standard BPF LSM hooks and kfuncs

Highly customizable by user
No need to upstream (except libbpf changes)

Finer granularity of control
e.g. if you want to skip signing for bpftrace

Strong auditability
Precise tracing of failures
Clear audit trails for security investigations

10

Disadvantages
The signing eBPF program must be trusted

Requires careful integration with secure boot
It also must be loaded as early as possible

But we can place it in initramfs
Or built into the kernel (not yet supported)

Distribution of the private key is a challenge
Not specific to this proposal
Same for DKMS signed modules

11

Proof of Concept
PKCS#7 signatures for both phases
BPF LSM hooks to intercept program loading
Standard cryptographic primitives from OpenSSL
Leverages existing Linux kernel keyring infrastructure
Available as open source (proof of concept)
github.com/congwang/ebpf-2-phase-signing

12

https://github.com/congwang/ebpf-2-phase-signing

Building eBPF Programs into the Kernel
The signing eBPF program becomes part of the trusted kernel image
Eliminates the security concerns of dynamic loading
Challenges:

No libbpf loader to use?
How to verify the program? What if it fails to verify?
Less flexibility for rapid deployment
Limited user-space interactions

13

Possible Solution
Compile the signing eBPF program into the kernel image
Parse the ELF section which contains the program
Call call_usermodehelper() to load and attach the program from user-space

Panic if the program fails to verify
Use memfd to load the program from memory

14

Pseudo Code
static int __init bpf_signing_init(void)
{
 int ret;
 char *argv[] = {
 "/sbin/bpftool",
 "prog",
 "load",
 "/boot/signing_prog.o",
 "pinned",
 "/sys/fs/bpf/signing_prog",
 "type",
 "lsm",
 NULL
 };
 char *envp[] = {
 "HOME=/",
 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
 NULL
 };

 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 if (ret < 0) {
 panic("Failed to load eBPF signing program: %d\n", ret);
 }

 ret = call_usermodehelper("/sbin/bpftool",
 (char *[]){ "/sbin/bpftool", "prog", "attach", "pinned",
 "/sys/fs/bpf/signing_prog", "lsm", NULL },
 envp, UMH_WAIT_PROC);
 if (ret < 0) {
 panic("Failed to attach eBPF signing program: %d\n", ret);
 }

 pr_info("eBPF signing program loaded successfully\n");
 return 0;
}

late_initcall(bpf_signing_init); /* After bpf subsystem init */
15

Thank You!
Questions?

Contact: Cong Wang xiyou.wangcong@gmail.com

16

mailto:xiyou.wangcong@gmail.com

